skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Pasqualetti, Fabio"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available December 16, 2025
  2. Score matching based diffusion has shown to achieve the state of art results in generation modeling. In the original score matching based diffusion algorithm, the forward equation is a differential equation for which the probability density equation evolves according to a linear partial differential equation, the Fokker-Planck equation. A drawback of this approach is that one needs the data distribution to have a Lipschitz logarithmic gradient. This excludes a large class of data distributions that have a compact support. We present a deterministic diffusion process for which the vector fields are always Lipschitz and hence the score does not explode for probability measures with compact support. This deterministic diffusion process can be seen as a regularization of the porous media equation equation, which enables one to guarantee long term convergence of the forward process to the noise distribution. Though the porous media equation is itself not always guaranteed to have a Lipschitz vector field, it can be used to understand the closeness of the output of the algorithm to the data distribution as a function of the the time horizon and score matching error. This analysis enables us to show that the algorithm has better dependence on the score matching error than approaches based on stochastic diffusions. Using numerical experiments we verify our theoretical results on example one and two dimensional data distributions which are compactly supported. Additionally, we validate the approach on a modified MNIST data set for which the distribution is concentrated on a compact set. In each of the experiments, the approach using deterministic diffusion performs better that the diffusion algorithm with stochastic forward process, when considering the FID scores of the generated samples. 
    more » « less
  3. The growing interest in complex decision-making and language modeling problems highlights the importance of sample-efficient learning over very long horizons. This work takes a step in this direction by investigating contextual linear bandits where the current reward depends on at most s prior actions and contexts (not necessarily consecutive), up to a time horizon of h. In order to avoid polynomial dependence on h, we propose new algorithms that leverage sparsity to discover the dependence pattern and arm parameters jointly. We consider both the data-poor (T= h) regimes and derive respective regret upper bounds O(d square-root(sT) +min(q, T) and O( square-root(sdT) ), with sparsity s, feature dimension d, total time horizon T, and q that is adaptive to the reward dependence pattern. Complementing upper bounds, we also show that learning over a single trajectory brings inherent challenges: While the dependence pattern and arm parameters form a rank-1 matrix, circulant matrices are not isometric over rank-1 manifolds and sample complexity indeed benefits from the sparse reward dependence structure. Our results necessitate a new analysis to address long-range temporal dependencies across data and avoid polynomial dependence on the reward horizon h. Specifically, we utilize connections to the restricted isometry property of circulant matrices formed by dependent sub-Gaussian vectors and establish new guarantees that are also of independent interest. 
    more » « less
  4. Abstract Oscillatory activity is ubiquitous in natural and engineered network systems. The interaction scheme underlying interdependent oscillatory components governs the emergence of network-wide patterns of synchrony that regulate and enable complex functions. Yet, understanding, and ultimately harnessing, the structure-function relationship in oscillator networks remains an outstanding challenge of modern science. Here, we address this challenge by presenting a principled method to prescribe exact and robust functional configurations from local network interactions through optimal tuning of the oscillators’ parameters. To quantify the behavioral synchrony between coupled oscillators, we introduce the notion offunctional pattern, which encodes the pairwise relationships between the oscillators’ phases. Our procedure is computationally efficient and provably correct, accounts for constrained interaction types, and allows to concurrently assign multiple desired functional patterns. Further, we derive algebraic and graph-theoretic conditions to guarantee the feasibility and stability of target functional patterns. These conditions provide an interpretable mapping between the structural constraints and their functional implications in oscillator networks. As a proof of concept, we apply the proposed method to replicate empirically recorded functional relationships from cortical oscillations in a human brain, and to redistribute the active power flow in different models of electrical grids. 
    more » « less
  5. null (Ed.)
  6. The structural and metabolic basis of control energy in the brain is uncovered by leveraging epilepsy as a human lesion model. 
    more » « less
  7. null (Ed.)